THE EXPONENTIAL DIOPHANTINE EQUATION AX2 + BY 2 = λkZ AND ITS APPLICATIONS
نویسندگان
چکیده
منابع مشابه
ON THE DIOPHANTINE EQUATION Ax2+22m =yn
Let h denote the class number of the quadratic field Q( √−A) for a square free odd integer A> 1, and suppose that n> 2 is an odd integer with (n,h)= 1 and m> 1. In this paper, it is proved that the equation of the title has no solution in positive integers x and y if n has any prime factor congruent to 1 modulo 4. If n has no such factor it is proved that there exists at most one solution with ...
متن کاملThe Exponential Diophantine Equation 2x + by = cz
Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + ...
متن کاملOn the Exponential Diophantine Equation
Let a, b, c be fixed positive integers satisfying a2 + ab + b2 = c with gcd(a, b) = 1. We show that the Diophantine equation a2x+axby+b2y = cz has only the positive integer solution (x, y, z) = (1, 1, 1) under some conditions. The proof is based on elementary methods and Cohn’s ones concerning the Diophantine equation x2 + C = yn. Mathematics Subject Classification: 11D61
متن کاملOn the Exponential Diophantine Equation ( 4 m 2 + 1
Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61
متن کاملOn the Exponential Diophantine Equation ( 12 m 2 + 1 ) x + ( 13 m 2 − 1 )
Let m be a positive integer. Then we show that the exponential Diophantine equation (12m2 + 1)x + (13m2 − 1)y = (5m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2008
ISSN: 1027-5487
DOI: 10.11650/twjm/1500574244